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SUM MARY 
A numerical method for predicting viscous flows in complex geometries has been presented. Integral mass 
and momentum conservation equations are deployed and these are discretized into algebraic form through 
numerical quadrature. The physical domain is divided into a number of non-orthogonal control volumes 
which are isoparametrically mapped on to standard rectangular cells. Numerical integration for unsteady 
mementum equations is performed over such non-orthogonal cells. The explicitly advanced velocity 
components obtained from unsteady momentum equations may not necessarily satisfy the mass conserva- 
tion condition in each cell. Compliance of the mass conservation equation and the consequent evolution of 
correct pressure distribution are accomplished through an iterative correction of pressure and velocity till 
divergence-free condition is obtained in each cell. The algorithm is applied on a few test problems, namely, 
lid-driven square and oblique cavities, developing flow in a rectangular channel and flow over square and 
circular cylinders placed in rectangular channels. The results exhibit good accuracy and justify the 
applicability of the algorithm. 

This Explicit Transient Algorithm for Flows in Arbitrary Geometry is given a generic name EXTRA- 
FLAG. 

KEY WORDS Navier-Stokes equations Mass and momentum balance Non-orthogonal control volume 
Gauss-Legendre quadrature Pressure correction Flow over bluff bodies 

1. INTRODUCTION 

The solution of full Navier-Stokes equations has been the subject of research for the past few 
decades. Especially, numerical solution of incompressible viscous flows in terms of primitive 
variables has posed severe challenges to the researchers. The difficulties mainly arise from the 
absence of any obvious equation for pressure and the nature of spatial coupling of the pressure 
and velocity. With the concept of staggered pressure and velocity grids the full Navier-Stokes 
equations have been solved by finite-difference-based explicit transient algorithms such as MAC' 
and SMAC,Z where the corrected pressures are obtained from the solution of a Poisson equation. 
A related technique developed by Chorin3 involves simultaneous iteration on pressure and 
velocity to obtain a converged solution. Hirt and Cook4 have developed a simplified explicit flow 
solver using the aforesaid pressure-velocity iteration for the solution of a wide variety of 
problems involving three-dimensional incompressible flows. However, implicit methods are 
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indeed attractive since they do not have stability restrictions on the time steps. The SIMPLE 
algorithm of Patankar and Spalding5 provided a successful implicit procedure with primitive 
variables. The basic SIMPLE algorithm is modified as SIMPLER637 and SIMPLEC8 for 
enhanced rate of convergence. The SIMPLE and its variants have dominated over the past 
decade in the field of numerical modelling of incompressible flows. 

In order to extend the application of the above-mentioned flow solvers to complex geometries, 
non-orthogonal body-conforming co-ordinate systems have been used. Works of Thompson et 
~ l . , ~  Vanka et al.,'O Raithby et al." and Shyy et a1." may be mentioned in this connection. 
Peric13 has attempted to utilize a non-staggered variable arrangement for the calculation of flow 
in a curved irregular geometry. The difficulty with this approach is that the flow equations in the 
transformed co-ordinates are always complicated and quite often a multi-block approach seems 
needful. For flows in complex geometries, the finite element method is attractive due to its 
geometrically additive property. However, preserving the transportive property of advective 
terms in the flow equations is non-trivial in finite element method and this aspect requires further 
research. The application of the finite element method to flow problems has been discussed by 
Zienkie~icz '~ and Taylor and Hughes.' Baliga and P a t a n k a P  have initiated a finite-element- 
based control volume method that incorporates some of the key FEM ideas such as non- 
orthogonal cell geometry, multidirectional interpolation and assembling of elements. Prakash 
and PatankarI7 have conducted more extensive investigations on this algorithm. 

Despite the several stimulating developments as stated above, research is still active on 
computation of incompressible flows in complex geometries. The common difficulties are the 
derivation of conservation principles for non-orthogonal control volumes, development of 
appropriate multidirectional interpolation schemes and the enormity of book keeping for both 
dependent and independent variables. Here, a novel algorithm (EXTRA-FLAG) using primitive 
variables is proposed for non-orthogonal geometries which resolves some of the above- 
mentioned difficulties. Ideas such as element-wise interpolation and transformation of non- 
orthogonal element geometry into a square computational element have been incorporated while 
solving the integral conservation equations. The proposed method has been applied to different 
test problems. These problems include lid-driven square and oblique cavities, developing flow in 
a two-dimensional rectangular channel and flows over square and circular cylinders in rectangu- 
lar channels. The method exhibits excellent accuracy and good convergence characteristics. 

2. DESCRIPTION OF THE EXTRA-FLAG ALGORITHM 

Here the EXTRA-FLAG algorithm is illustrated for the simulation of unsteady incompressible 
flows in arbitrary shaped two-dimensional geometries. 

2.1. Domain discretization and governing equations 

The domain is discretized into small curvilinear quadrilateral cells (Figure 1). The velocity 
nodes are located at the vertices and the pressure nodes are located at the centroids of these cells. 
The continuity control volumes (CV1) are formed by grid lines connecting velocity nodes. 
Similarly, momentum control volumes (CV2) are formed by curvilinear quadrilaterals whose 
vertices are the pressure nodes. However, the velocities for any point within CV2 are interpolated 
from the interpolation domain shown in Figure 2. In the present algorithm, the velocity 
components are collocated at a velocity node so that the same momentum control volume can be 
employed for both momentum equations. 
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Figure 1 .  Schematic representation of grid discretization 
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Figure 2. Interpolation domain for momentum balance 

For mass balance on CV1, 

fcsl V.hdl=fal  (un,+un,)dl=O. 

Here V is the velocity vector and dl is the elemental length along the boundary (CS1) of the 
control volume; u and u are the Cartesian velocity components. The direction cosines of the 
outward normal ( r i )  on the boundary are n, and n,, respectively. 

For momentum balance on CV2. 

x momentum 

y momentum 

where p is the non-gravitational pressure, p is the density and p is the dynamic viscosity. 

2.2. Interpolation of flow variables within respective control volumes 

Since the order of momentum equations is higher than of the continuity equation, velocity 
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variables have been interpolated using biquadratic and bilinear functions for momentum and 
mass balances, respectively. 

Thus, for the continuity equation 
4 4 

U =  C M i ~ i ,  V =  C Miui (4) 
i =  1 i =  1 

and for momentum equations 
9 9 

where ui, ui are the nodal velocities for the respective control volumes. Also Mi, N i  are the linear 
and quadratic Lagrangian interpolation functions,15 respectively. The variation of pressure over 
the momentum control 'volume is similarly expressed in the form 

A 

The number of continuity cells (or equations) has to match exactly with the number of pressure 
variables, since mass imbalance in each continuity cell is used for pressure correction. It is for this 
reason that the pressures have been placed at the centroids of the continuity control volumes. The 
transient terms of the momentum equations are evaluated using the lumping concept: 

where Acvz is the area of the control volume CV2 and ti, tj are the time derivatives of the velocity 
components at the central node. 

I 2 - 9 - Node numbers 

0 0- @ - Side numbers 

L-- - -i -- 
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-X 

Physicol domoin Cornputotionol dornoin 

Figure 3. Transformation of a curvilinear control volume into a square computational cell 
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2.3. Numerical evaluation of the area and line integrals 

In equations (2) and (3), integrations are carried out by Gauss-Legendre quadrature. 
Isoparametric mapping (Figure 3 )  is employed for transforming the cell geometry into a square 
computational cell for performing numerical quadrature. The co-ordinates are thus interpolated 
as 

where ( x i , y i )  are the co-ordinates of the nodes surrounding the control volume as shown in 
Figure 3. 

It is necessary that the arc lengths, areas, surface integrals, derivatives and line integrals in the 
physical co-ordinate system be converted to the computational co-ordinates 5 and q. Applying 
the chain rule, 

ax ax 

(9) 

The derivatives are obtained as 

where 4 can be u or u and J is the Jacobian of transformation. 

wise sense of integration) can be written as 
On the rth side (r = 1,2,3,4) the elemental length vector dlr (defined according to the anticlock- 

The outward unit normal vectors on corresponding cell boundaries are given by 

where m=O for r = l , 2 ;  m = l  for r=3,4  and 

c = 5  for r =  1,3 and [ = q  for r=2,4.  Also, the elemental length, dl is represented as 

dl= - d< as ?=constant for r =  1 and 3 
(:i)r 
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dl = - dq as t =constant for r =2 and 4. 
( i i ) r  

Lastly, the elemental area, dA, is expressed as 

Now all the integrals appearing in equations (2) and (3) can be rewritten in terms of ( and q. 
Finally, these integrals are evaluated using 3-point Gauss-Legendre quadrature. During the 
application of this quadrature, the integrands are evaluated at each Gauss point of the respective 
boundary or control volume and all such Gauss point contributions are summed up. 

For the continuity equation (l), it is not necessary to employ the numerical quadrature since 
the shape of CV1 is simpler and the velocity interpolation is linear. The procedure for deriving the 
pressure correction equation using equation (1) is described in a subsequent section. 

dA =I J 1 dtdq .  (13) 

2.4. Matrix equations for momentum and mass balance 

The final discretized momentum equations for a velocity node in matrix form are 

2 x  1 2 x 1 8  1 8 x 1  2 x 4  4 x 1  

where CM and DM are coefficient submatrices representing the convective and diffusive contri- 
butions, respectively, and SM is the pressure coefficient matrix. Also u, v and p are vectors of 
nodal velocities and pressures corresponding to the momentum control volume under considera- 
tion. 

The convective coefficient matrix [CM] can be expressed as 

2 x  18 1 x 9  1 x 9  

where the entries of the submatrices CMI and CM2 are given by 

Nj(un, + un,) dl for j = 1, . . .  9. 
1 

Applying Gauss-Legendre quadrature over each side of the control volume, the above 
expression is evaluated as 

( 154 1 3 9 1 
CMlj=CMzj=- [ N j  (u,n,+u,n,)N, wkAlr, 

PAcvz r = l  k = l  q = 1  

where 
3 3  

The corresponding diffusion matrix P M ]  is expressed as 

CUM] = 

2 x 1 8  1 x 9  each 
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where the entries of the submatrices DU1,DV1,DU2 and DV2 are 

DUlj=- 1 1 4 3  c [2pnx x + p n y  aNj %]wkAlr 
PACV2 r = l  k = l  aY 

1 4 3  a N .  
Dvij=- PAcvz r = l  c [p"y&]WkAlr 

k = l  

1 
DUZj=- [pnx%]wkAlr  aY 

PACV2 r = l  k = l  

1 4  
DV2j=- c wkAlr f o r j = l , .  . . ,9. (16b) 

PACV2 r =  1 k =  1 

The pressure matrix in turn is 

2 x 4  1 x 4  each 

where the entries of the submatrices SM1 and SM2 are given by 

1 4 3  

f o r j = l , .  . . ,4. (17b) 

On account of linear interpolation for the velocity variable within the continuity control 
volume CV1, the discretized form of mass balance equation becomes 

where iir,U, are, respectively, the average values of x and y velocity components on the sides 
of cs1. 
2.5. Upwinding of convection terms 

In the numerical solution of Navier-Stokes equations, the convection terms need specific 
attention for conserving the transportive property. The present algorithm produces trouble-free 
solutions up to a cell Reynolds number of about 6. Spatially, oscillatory velocity fields result for 
higher cell Reynolds numbers which may be attributed to the need for upwinding. 

An effective upwind discretization for the convection terms is implemented by setting 
I f  

CMIjuj= CM2 j~j=i f ( u n , +  vny)Gjujdl, 
PACV2 

where Gj is the upwind basis function given by 
9 9 

(19) 

The subscript 'b' corresponds to the node situated upstream of the concerned face and CI is 
a fraction; for purely symmetric parabolic interpolation ct = O  and for first-order upwind inter- 
polation, CI = 1. 
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2.6. Derivation of pressure correction equation 

When the time gradient of velocities is expressed in discretized form, equation (14) becomes 

where the superscripts n and n + 1 denote time levels. However, at the start of calculation for each 
time step, p"' is not known and hence equation (14) predicts provisional velocities (represented 
by a superscript asterisk) that satisfy momentum balance corresponding to the p" pressures. When 
both pressure and velocities undergo iterative corrections, p" takes up provisional value p*. Thus, 

{r:} = { ::} + At [CM" + D M ]  {::} + Ai ISM] { p* } . 

As continuity equation is satisfied in each cell, all provisional velocities reach the final values for 
the present time step (n + 1). Subtracting equation (22) from equation (21) the expressions for the 
velocity corrections can be obtained as 

2 x  1 2 x 1  2 x 4  4 x 1  

where 60, So and 6p are the velocity and pressure corrections. Applying the principle of continuity 
at (n  + 1)th level, 

4 

C (P:+ nxr + 6:' 'nyr)AIr=O. (244 
r =  1 

The unconverged velocities, however, do not satisfy the continuity equation, leading to a non- 
zero residue of the form 

4 

(ii: nxr + 17: nYr)Alr = R .  

Subtracting equation (24b) from equation (24a), we obtain 
r =  1 

4 

C (6Pr~xr+Sfirnyr)A1r= - R,  
r =  1 

where Sts, and SV, are the average velocity corrections on the rth 

(25) 

side, so as to satisfy continuity 
principle in the control volume. The quantities SPr and Sfir are expressed in terms of the nodal 
velocity corrections, which in turn are substituted by proper pressure correction terms using 
equation (23). These average velocity corrections, when evaluated as the simple average of the 
corresponding nodal velocities, lead to decoupling of pressure in alternate continuity cells. 
Similar pressure splitting has also been observed by Majumdar rt a/.'' 

Introducing face-centre velocity corrections 6uf,, and S V ~ , ~  (Figure 4), the average corrections 
on the east side of CV1 can be expressed as 

where I1 and I11 are the velocity nodes lying on the east face. Similarly, the average corrections on 
other sides can also be estimated. Note that equation (26) amounts to the application of 



FLOW IN ARBITRARY GEOMETRY 983 

x NE 

N 
X f NW 

\ 

WN-- 

x sw 
Y 

t 

I 

I II I II 
I 

i 
s x SE 

Ggure 4. Pressure velocity coupling in a continuity control volume 

Simpson's rule along the boundaries of CV1. In order to find the expressions for Suf,, and Svr,,, 
a modified form of equation (23) can be written for the velocity correction vector as 

Eventually, we can write 

or 

Similarly, 

At 
P 

bV = - -V(Sp). 

At bpE-Spp 
P {' AIE ] bur,. =(!a SV)f,. = -- i 

Here 2 is the unit vector connecting the central pressure node P to the eastern neighbouring 
pressure node E. Also, AIE is the distance between the nodes P and E. Similarly, the other 
face-centre velocity corrections can be obtained as 
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where the lower-case subscripts (n, w, s) refer to the corresponding boundary faces, while the 
upper-case subscripts (N, W, S) refer to the pressure nodes of the corresponding continuity cells. 
The mass residue contribution Re to the east face is given by 

Ale(6ii,n,, +6FenYe)= - R e .  (304 

A I , { ~ ~ ~ ~ ~ + d 6 ~ ~ ~ ~ + ~ ~ ~ ~ , , } n , , + A l ~ { ~ 6 u ~ ~ + ~ ~ u ~ ~ ~ + ~ 6 u ~ , ~ } n ~ ~ =  - R e .  (30b) 

Substituting for dzi, and 66, from equation (26), we have 

From equation (23), the nodal velocity corrections are given by 

and 

It is to be noted that in equations (31a) and (31b), the pressure coefficient matrix SM is evaluated 
at nodes I1 and 111. After substituting equations (28a), (28b), (31a) and (31b) into equation (30b), 
the residue contribution of the east face Re can be calculated in terms of pressure corrections. 
Similar exercise for the other sides of the continuity cells would lead to a pressure correction 
equation of the form 

[CP] (6P) =-R, (32) 
1 x 9  9 x 1  

where CP is the coefficient matrix corresponding to the pressure correction array and R is the 
mass residue arising from the velocities updated by momentum equations. For later iterations, 
the incremental residue is used in equation (32) which is calculated from equation (25). Equation 
(32) has a strong diagonal dominance ensuring smooth convergence with respect to iterations. In 
the present work, point-by-point iteration with successive overrelaxation has been employed to 
solve the pressure correction equations in the whole domain. The pressure and velocity correc- 
tions are iteratively improved until the corrections to the mass residues decrease below 
a predefined convergence level (lo-') for all the continuity cells. Thus, by explicit momentum 
evaluation and implicit satisfaction of continuity, time marching of nodal velocities and pressures 
are continued until steady state is reached from the given initial conditions. 

3. TEST PROBLEMS 

The EXTRA-FLAG algorithm is first tested on some simple two-dimensional flow situations in 
orthogonal configurations, namely, the lid-driven square cavity flow and the developing flow in 
a rectangular channel. Subsequently, flow in another orthogonal geometry with more complex 
physics has been solved - the flow over square cylinder placed in a channel. Next the algorithm 
has been successfully applied to a simple non-orthogonal geometry - the lid-driven oblique 
cavity. Finally, the flow over a circular cylinder placed in a channel has been solved with 
non-orthogonal mesh. 
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3.1. Lid-driven square cavity 

The numerical domain consists of a two-dimensional lid-driven square cavity with no-slip and 
impervious boundary conditions at the bottom and side walls, except at the top surface where the 
u velocity is constant and equal to ULID. In the governing equations, the velocities have been 
non-dimensionalized with respect to the cavity height H and the Reynolds number is defined as 
Re=(ULID. H ) / v .  The streamline patterns using 81 x 81 grid for the aforesaid two-dimensional 
cavity at Re = 400 are shown in Figure 5. These compare favourably with the numerical solution 
of Ghia et ~ 1 . ’ ~  In Figure 6, u velocity components at the vertical mid-plane are plotted for 41 x 41 
and 81 x 81 grids. These are also compared with the results obtained by Ghia et a l l 9  and Peyret 
and Taylor.” It may be mentioned that Ghia et al. adopted a 129 x 129 mesh with multigrid 
technique. However, present computations on 81 x 81 grid show good agreement with the results 
of Ghia et al. as seen in Figure 6. The minimum u velocity position and the variation of u velocity 
match well. 

For a Reynolds number 1000, the extreme values of velocities have been predicted with 
a 41 x 41 grid. These are compared with the results obtained by Ghia et ~ 1 . ’ ~  and Wang et a!.’’ in 
Table I. The discrepancy between the results of Ghia et ~ 1 . ’ ~  and those of ours can be attributed to 
the comparatively coarser grid employed in the present work. However, as compared to the 
predictions of Wang et aZ.’l which were obtained on a still coarser grid, the present results are 
better, as expected. 

3.2. Developing flow in a channel 

Developing flow in a rectangular channel has been simulated in an effort to check the ability of 
the algorithm to predict the hydrodynamic entrance length in a two-dimensional channel flow. In 
the governing equations, the velocities are non-dimensionalized with respect to the average 
incoming velocity U,, at the channel inlet. All lengths have been non-dimensionalized with 

i. -.09597 
2 -.09092 

4. -.08082 
5. -.07577 
6. -.07072 
7. -.06567 

9. -.05556 
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14. -.03031 
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16. -.01010 
19. -.00505 
20. .ooooo 
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3. -.0085a7 
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Figure 5. Streamlines in a lid-driven square cavity for Re=400 (81 x 81 grid) 
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Figure 6. Variation of U velocity along the vertical mid-plane for the lid-driven flow in a square cavity 

Table I. Extremes in velocity for the driven cavity, R e =  lo00 

Authors urnin at x=O5 vmin at y = 0 3  umrx at y = O 5  

%in Y Umin X umax X 

Ghia et al.” -0.388 0.172 -0.516 0.906 0.371 0.156 
129 x 129 grid 

21 x 2 1  grid 

Present -0’244 0.175 -0.361 0’925 0.227 0.187 
41 x 4 1  grid 

Wang et aLz’ -0135 0.240 -0.300 0.930 0-138 0.04 1 

respect to the channel height H and the Reynolds number is defined as Re=(Uav H ) / v .  No-slip 
and impervious boundary conditions for velocities are applied on the top and the bottom walls 
(u=O, u=O). At the inlet, the normal component of velocity is zero ( u = O )  and a uniform axial 
velocity profile (u= Uav) is deployed. At the exit of the channel, second derivatives of the 
dependent variables in the flow direction are set equal to zero (d2u/ax2 = d Z u / a x 2  = 0) in order to 
ensure smooth transition through the outflow boundary. The computed velocity profile corrob- 
orates well with the results of Abarbanel et a1.22 

Distributions of skin friction (C,Re) along the channel walls are exactly same for the top and 
bottom walls. As expected, the skin friction values (CfRe) for all Reynolds numbers asymp- 
totically reach a constant value of 12 (which is the value corresponding to the fully developed 
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Poiseuille flow) from very high values near the inlet (Figure 7). However, from our results, it is 
quite evident that the entry length (the length at which fully developed velocity profile culminates) 
is a function of Reynolds number and this functional relationship may be summarized as 
(x/H)zO.O55Re. Defining the fully developed condition as the attainment of 99% of Poiseuille 
profile, our prediction of the entry length corroborates the results available in literature 
(see Reference 23). 

3.3. Flow over square cylinder placed in a rectangular channel 

The flow physics and the finer details of this problem are well discussed in authors’ earlier work 
using MAC alg~ri thm.’~ Here this problem has been chosen to establish the applicability of 
EXTRA-FLAG by repeating similar calculations. The geometry of the problem is shown in 
Figure 8. A fully developed flow field is considered at the channel inlet. On the cyliner no-slip and 
impervious conditions are prescribed. The other boundary conditions at the channel walls and 
exit sections are the same as in the developing channel flow problem discussed earlier. 

The first critical Reynolds number for the inception of wake oscillation is around 90 for 
a cylinder to channel height ratio of 0.25 (Figure 9). With the MAC algorithm, the corresponding 
value of the Reynolds number was found to be 85.2s Davis et aLZs found the same as !z 100 and 
OkajimaZ6 reported this Reynolds number as 70 for flows over rectangular cylinders placed in an 
infinite medium. Also, the formation of von Karman vortex street and shedding frequency match 
very well with the earlier The alternate shedding of vortices are quite well captured in the 
streamline plots for ReB=500 (Figure 10). However, the present algorithm being in its develop- 
mental stage, the computer code is not properly optimized and it does not fully exploit the 
features of orthogonal geometry. Thus, it takes relatively more execution time than the corres- 
ponding MAC code (see the appendix). In order to establish the potential utility of the present 

d 
* u 

50 Re = 40 

30 
Re = 20 

-0 I 2 3 

X 

Figure 7. Variation of C,Re in a two-dimensional channel 
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X ! I 
Figure 8. Flow in a rectangular channel with built-in square cylinder 

- Uav B/H = 0.25, ReB =go 

x = 2.0 X = 3.81 

Figure 9. Asymmetry in the wake behind the square cylinder 

algorithm to non-orthogonal curvilinear geometries, two related problems are discussed in the 
following sections. 

3.4. Lid-driven oblique cavity 

The geometry of the cavity is such that its slant height, base and lid dimensions are all equal 
and the slant angle for the sides is 60". A non-orthogonal grid is necessary for this geometry. The 
boundary conditions are same as those of the lid-driven square cavity problem. Cartesian velocity 
components have been used in the numerical simulation. 

On a 21 x 21 grid, this problem has been solved corresponding to the Reynolds numbers of 100, 
400 and 1OOO. Figure 11 shows the velocity vectors for Re = 1000. The vortex centre in oblique 
cavity shifts with Reynolds number similar to the trend seen for the square cavity. The u-velocity 
distributions along the slant mid-plane (Figure 12) show physically meaningful values and 
minimum u velocity positions for different Reynolds numbers. It is noted that our results for 
oblique cavity compare favourably with the results of Due to sparse numerical or 
experimental database on oblique cavity, rigorous comparison was not possible. 
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B/H = 0.25 
Reg =500 

Figure 10. Streamlines in a channel with built-in square cylinder at Re,=500 

v=o 
ULID= 1.0 -> 

. . . . . .  

u = o , v =  0 
Figure 1 I .  Velocity vectors in a lid-driven oblique cavity for Re= Loo0 

L o / ,  , , , , 

Figure 12. Variation of U velocity along the mid-plane in an oblique cavity 

3.5. Flow over circular cylinder placed in a rectangular channel 

Study of vortex structure behind a circular cylinder placed in a rectangular channel is an 
attractive exercise to establish the applicability of EXTRA-FLAG to a complex non-orthogonal 
geometry. A host of  investigation^^^-^^ have been reported which explain the features of vortex 
shedding and the wakezone aerodynamics. 
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Figure 13. Configuration definition (a)  and computational grid (b)  for two-dimensional flow in a channel with built-in 
circular cylinder 

Figure 14. Time evolution of velocity for flow through a channel with built-in circular cylinder (Re,= 112) 
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D/H = 0.25 

Figure 15. Streamlines in a channel with built-in circular cylinder at ReD = 625 

The flow domain resembles that for the square cylinder problem while the width (B) of the 
cylinder has been replaced by the diameter (D). The boundary conditions are also similar to the 
case of square cylinder. A non-orthogonal algebraically generated grid is used as shown in Figure 
13. Unlike the conventional body-fitted co-ordinate system based solvers, EXTRA-FLAG does 
not need a smooth grid. Computations hava been performed at Reynolds numbers (ReD)  of 
87,112 and 625 for the blockage ratio of 0.25. The initiation of vortex shedding occurred at 
ReD=87 with a Strouhal number of 0.2341. Figure 14 shows the time evolution of the velocity 
vectors for ReD= 112. Corresponding to a non-dimensional time of 2.25, the flow has become 
periodic in the near-wake. At t=6-0, the vector plot shows that periodicity has set in. For 
ReD=625, the stream function plot (Figure 15) shows the dominance of oscillations in the entire 
wake region. 

4. CONCLUSION 

The EXTRA-FLAG algorithm appears to have an excellent potential for predicting complex 
flows in non-orthogonal geometries. The accuracy of the predictions is comparable to those of the 
existing methods and the convergence characteristics of the continuity iterations are quite good. 
The method can easily be extended to three-dimensional flows also. 

APPENDIX 

Table 11. Typical CPU times reqired on a CONVEX C-220 machine for different flow problems studied 
~ ~ ~~ ~ 

No. Problem Grid Time monitored for CPU time (s) 

1 Square cavity problem for Re= 100 21 x 21 Steady-state 45-0 
(EXTRA-FLAG) 

2 Square cavity problem for Re= 1000 21 x 21 Steady-state 

3 Oblique cavity problem for Re= loo0 21 x 21 Steady-state 

4 Developing flow in a channel 21 x 11 Steady-state 

(EXTRA-FLAG) 

(EXTRA-FLAG) 

for Re=40 (EXTRA-FLAG) 

1 17.6 

190-7 

30. I 

5 Flow over square cylinder placed in 97 x 33 One time-step calculation 49-5 
a channel solved by EXTRA-FLAG 
for Re = 450 periodicity 

after stabilization of 
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APPENDIX (Continued) 

Table 11. (Continued) 

No. Problem Grid Time monitored for CPU time (s) 

6 Flow over square cylinder placed in 200 x 34 One time-step calculation 61.0 
a channel solved by MAC method 
for Re = 450 periodicity 

a channel solved by EXTRA-FLAG 
for Re = 450 periodicity 

after stabilization of 

7 Flow over circular cylinder placed in 97 x 33 One time-step calculation 74.3 
after stabilization of 
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